Re: Pitchforks And Torches Will No Longer Be Able To Stop The 1%

Posted: Sun Feb 02, 2020 2:32 pm, #45
by MaureenCarter
From the largest machine in the world, the Large Hadron Collider, to one of the smallest machines, scientists have now been able to put a particle accelerator onto a chip. Talk about impressive convergence!

How Scientists Squeezed a Particle Accelerator Onto a Tiny Silicon Chip
By Edd Gent -Jan 07, 2020 ... icon-chip/
Now, researchers have developed a tiny silicon chip smaller than the width of a human hair that can accelerate electrons using an infrared laser. The output is only a fraction of that of a large accelerator, but the researchers plan to combine a thousand of these devices by the end of this year to accelerate electrons to 94 percent of the speed of light, or 1 million electron volts (1MeV), which would be powerful enough for research or medical purposes.
A single stage can currently boost the speed of the electrons up to 1KeV (a thousandth of a MeV), but because the device is an integrated circuit it shouldn’t be too complicated to stitch many of the devices together to accelerate them to much higher energies. They are fabricated using industrial processes, which should allow for significant cost reductions.

If the team achieves their goal, the resulting device could make it possible for far more scientists to carry out cutting-edge experiments in chemistry, materials science, and biological discovery. Talk about a convergence of technology from the very large to the every small.

One particularly promising application would be to use them to create small bunches of electrons that result in x-ray pulses just a few attoseconds (one quintillionth of a second) long. These could be used to probe chemical reactions and other events at the molecular scale on extremely short timescales to create “molecular movies,” Joel England, one of the authors of the paper, told IEEE Spectrum in 2017.

There could also be promising medical applications of the technology. One of the authors is working on a way to transport high-energy electrons from the accelerator-on-a-chip directly to tumors using a catheter-like vacuum tube that could be inserted below the skin. That would be a major improvement over today’s bulky and tricky-to-focus X-ray based radiotherapy devices.

The device is probably a long way from replacing the massive accelerators used for particle physics experiments. But the researchers point out that computers have shown that stitching together thousands of low-cost integrated silicon chips is an incredibly powerful and scalable design approach. So never say never.


The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider and the largest machine in the world.[1][2] It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries.[3] It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.